Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483883

RESUMO

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Assuntos
Dinorfinas , 60598 , Corno Dorsal da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Camundongos Transgênicos , Interneurônios/metabolismo , Células do Corno Posterior/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo
2.
J Pain ; 24(8): 1321-1336, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37019165

RESUMO

Clinical association studies have identified early-life iron deficiency (ID) as a risk factor for the development of chronic pain. While preclinical studies have shown that early-life ID persistently alters neuronal function in the central nervous system, a causal relationship between early-life ID and chronic pain has yet to be established. We sought to address this gap in knowledge by characterizing pain sensitivity in developing male and female C57Bl/6 mice that were exposed to dietary ID during early life. Dietary iron was reduced by ∼90% in dams between gestational day 14 and postnatal day (P)10, with dams fed an ingredient-matched, iron-sufficient diet serving as controls. While cutaneous mechanical and thermal withdrawal thresholds were not altered during the acute ID state at P10 and P21, ID mice were more sensitive to mechanical pressure at P21 independent of sex. During adulthood, when signs of ID had resolved, mechanical and thermal thresholds were similar between early-life ID and control groups, although male and female ID mice displayed increased thermal tolerance at an aversive (45 °C) temperature. Interestingly, while adult ID mice showed decreased formalin-induced nocifensive behaviors, they showed exacerbated mechanical hypersensitivity and increased paw guarding in response to hindpaw incision in both sexes. Collectively, these results suggest that early-life ID elicits persistent changes in nociceptive processing and appears capable of priming developing pain pathways. PERSPECTIVE: This study provides novel evidence that early-life ID evokes sex-independent effects on nociception in developing mice, including an exacerbation of postsurgical pain during adulthood. These findings represent a critical first step towards the long-term goal of improving health outcomes for pain patients with a prior history of ID.


Assuntos
Dor Crônica , Deficiências de Ferro , Camundongos , Animais , Masculino , Feminino , Nociceptividade , Dor Crônica/etiologia , Dor Crônica/metabolismo , Neurônios/metabolismo , Limiar da Dor/fisiologia , Ferro/metabolismo , Animais Recém-Nascidos
3.
Pain ; 164(4): 905-917, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149785

RESUMO

ABSTRACT: The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.


Assuntos
Interneurônios , Corno Dorsal da Medula Espinal , Animais , Camundongos , Feminino , Masculino , Animais Recém-Nascidos , Potenciais da Membrana/fisiologia , Fibras Nervosas Amielínicas , Medula Espinal
4.
Pain Rep ; 6(2): e947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34296052

RESUMO

INTRODUCTION: Inhibitory neurons in the spinal dorsal horn can be classified based on expression of neurochemical marker genes. However, these marker genes are often expressed throughout the central nervous system, which poses challenges for manipulating genetically identified spinal neurons without undesired off-target effects. OBJECTIVES: We investigated whether Gucy2d, previously identified as a highly selective marker of dynorphin-lineage neurons in the dorsal horn, is expressed in other locations within the adult mouse spinal cord, dorsal root ganglia (DRG), or brain. In addition, we sought to molecularly characterize Gucy2d-expressing dorsal horn neurons and investigate whether the disruption of Gucy2d gene expression affects sensitivity to itch or pain. METHODS: In situ hybridization experiments assessed Gucy2d mRNA expression in the adult mouse spinal cord, DRG, and brain, and its colocalization with Pax2, Bhlhb5, and Pde2a in dorsal horn neurons. Knockout mice lacking Gucy2d expression were compared with littermate controls to assess sensitivity to chloroquine-induced itch and dry skin-mediated chronic itch, as well as heat, cold, or mechanical stimuli. RESULTS: Gucy2d is selectively expressed in dynorphin-lineage neurons in lamina I-III of the adult mouse spinal cord but not in the brain or DRG. Spinal Gucy2d-expressing neurons are inhibitory neurons that also express the transcription factor Bhlhb5 and the cGMP-dependent phosphodiesterase Pde2a. Gucy2d knockout mice did not exhibit altered responses to itch or pain. CONCLUSIONS: The selective expression of Gucy2d within a subpopulation of inhibitory dorsal horn neurons may yield a means to selectively manipulate inhibitory signaling at the level of the spinal cord without effects on the brain.

5.
Pain ; 162(1): 203-218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045156

RESUMO

Neonatal tissue damage can have long-lasting effects on nociceptive processing in the central nervous system, which may reflect persistent injury-evoked alterations to the normal balance between synaptic inhibition and excitation in the spinal dorsal horn. Spinal dynorphin-lineage (pDyn) neurons are part of an inhibitory circuit which limits the flow of nociceptive input to the brain and is disrupted by neonatal tissue damage. To identify the potential molecular underpinnings of this disruption, an unbiased single-nucleus RNAseq analysis of adult mouse spinal pDyn cells characterized this population in depth and then identified changes in gene expression evoked by neonatal hindpaw incision. The analysis revealed 11 transcriptionally distinct subpopulations (ie, clusters) of dynorphin-lineage cells, including both inhibitory and excitatory neurons. Investigation of injury-evoked differential gene expression identified 15 genes that were significantly upregulated or downregulated in adult pDyn neurons from neonatally incised mice compared with naive littermate controls, with both cluster-specific and pan-neuronal transcriptional changes observed. Several of the identified genes, such as Oxr1 and Fth1 (encoding ferritin), were related to the cellular stress response. However, the relatively low number of injury-evoked differentially expressed genes also suggests that posttranscriptional regulation within pDyn neurons may play a key role in the priming of developing nociceptive circuits by early-life injury. Overall, the findings reveal novel insights into the molecular heterogeneity of a key population of dorsal horn interneurons that has previously been implicated in the suppression of mechanical pain and itch.


Assuntos
Dinorfinas , Corno Dorsal da Medula Espinal , Animais , Dinorfinas/genética , Interneurônios , Camundongos , Neurônios , Dor , Células do Corno Posterior
6.
Pain ; 161(8): 1906-1924, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32701849

RESUMO

Inhibitory interneurons in the adult spinal dorsal horn (DH) can be neurochemically classified into subpopulations that regulate distinct somatosensory modalities. Although inhibitory networks in the rodent DH undergo dramatic remodeling over the first weeks of life, little is known about the maturation of identified classes of GABAergic interneurons, or whether their role in somatosensation shifts during development. We investigated age-dependent changes in the connectivity and function of prodynorphin (DYN)-lineage neurons in the mouse DH that suppress mechanosensation and itch during adulthood. In vitro patch clamp recordings revealed a developmental increase in primary afferent drive to DYN interneurons and a transition from exclusive C-fiber monosynaptic input to mixed A-fiber and C-fiber innervation. Although most adult DYN interneurons exhibited tonic firing as expected from their inhibitory phenotype, neonatal and adolescent DYN cells were predominantly classified as phasic or single-spiking. Importantly, we also found that most of the inhibitory presynaptic terminals contacting lamina I spinoparabrachial projection neurons (PNs) originate from DYN neurons. Furthermore, inhibitory synaptic input from DYN interneurons onto PNs was weaker during the neonatal period, likely reflecting a lower number of GABAergic terminals and a reduced probability of GABA release compared to adults. Finally, spinal DYN interneurons attenuated mechanical sensitivity throughout development, but this population dampened acute nonhistaminergic itch only during adulthood. Collectively, these findings suggest that the spinal "gates" controlling sensory transmission to the brain may emerge in a modality-selective manner during early life due to the postnatal tuning of inhibitory synaptic circuits within the DH.


Assuntos
Interneurônios , Animais , Dinorfinas , Feminino , Masculino , Camundongos , Fibras Nervosas Mielinizadas , Fibras Nervosas Amielínicas , Células do Corno Posterior , Corno Dorsal da Medula Espinal
7.
J Neurosci ; 40(20): 3882-3895, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32291327

RESUMO

Neonatal tissue damage induces long-term deficits in inhibitory synaptic transmission within the spinal superficial dorsal horn (SDH) that include a reduction in primary afferent-evoked, feedforward inhibition onto adult projection neurons. However, the subpopulations of mature GABAergic interneurons which are compromised by early-life injury have yet to be identified. The present research illuminates the persistent effects of neonatal surgical injury on the function of inhibitory SDH interneurons derived from the prodynorphin (DYN) lineage, a population that synapses directly onto lamina I spinoparabrachial neurons and is known to suppress mechanical pain and itch in adults. The results demonstrate that hindpaw incision at postnatal day 3 (P3) significantly decreased the strength of primary afferent-evoked glutamatergic drive onto DYN neurons within the adult mouse SDH while increasing the appearance of afferent-evoked inhibition onto the same population. Neonatal injury also dampened the intrinsic membrane excitability of mature DYN neurons, and reduced their action potential discharge in response to sensory input, compared with naive littermate controls. Furthermore, P3 incision decreased the efficacy of inhibitory DYN synapses onto adult spinoparabrachial neurons, which reflected a prolonged reduction in the probability of GABA release. Collectively, the data suggest that early-life tissue damage may persistently constrain the ability of spinal DYN interneurons to limit ascending nociceptive transmission to the adult brain. This is predicted to contribute to the loss of feedforward inhibition onto mature projection neurons, and the "priming" of nociceptive circuits in the developing spinal cord, following injuries during the neonatal period.SIGNIFICANCE STATEMENT Neonatal injury has lasting effects on pain processing in the adult CNS, including a reduction in feedforward inhibition onto ascending projection neurons in the spinal dorsal horn. While it is clear that spinal GABAergic interneurons are comprised of multiple subpopulations that play distinct roles in somatosensation, the identity of those interneurons which are compromised by tissue damage during early life remains unknown. Here we document persistent deficits in spinal inhibitory circuits involving dynorphin-lineage interneurons previously implicated in gating mechanical pain and itch. Notably, neonatal injury reduced the strength of dynorphin-lineage inhibitory synapses onto mature lamina I spinoparabrachial neurons, a major output of the spinal nociceptive network, which could contribute to the priming of pain pathways by early tissue damage.


Assuntos
Dinorfinas , Membro Posterior/lesões , Inibição Neural , Vias Neurais/fisiopatologia , Corno Dorsal da Medula Espinal/lesões , Potenciais de Ação , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Feminino , Glutamatos/fisiologia , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Interneurônios , Camundongos , Neurônios Aferentes , Nociceptividade , Técnicas de Patch-Clamp , Medula Espinal/fisiopatologia , Corno Dorsal da Medula Espinal/fisiopatologia
8.
Pain ; 160(10): 2380-2397, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166300

RESUMO

Mounting evidence suggests that the spinal dorsal horn (SDH) contains multiple subpopulations of inhibitory interneurons that play distinct roles in somatosensory processing, as exemplified by the importance of spinal dynorphin-expressing neurons for the suppression of mechanical pain and chemical itch. Although it is clear that GABAergic transmission in the SDH undergoes significant alterations during early postnatal development, little is known about the maturation of discrete inhibitory "microcircuits" within the region. As a result, the goal of this study was to elucidate the gene expression profile of spinal dynorphin (pDyn)-lineage neurons throughout life. We isolated nuclear RNA specifically from pDyn-lineage SDH interneurons at postnatal days 7, 21, and 80 using the Isolation of Nuclei Tagged in Specific Cell Types (INTACT) technique, followed by RNA-seq analysis. Over 650 genes were ≥2-fold enriched in adult pDyn nuclei compared with non-pDyn spinal cord nuclei, including targets with known relevance to pain such as galanin (Gal), prepronociceptin (Pnoc), and nitric oxide synthase 1 (Nos1). In addition, the gene encoding a membrane-bound guanylate cyclase, Gucy2d, was identified as a novel and highly selective marker of the pDyn population within the SDH. Differential gene expression analysis comparing pDyn nuclei across the 3 ages revealed sets of genes that were significantly upregulated (such as Cartpt, encoding cocaine- and amphetamine-regulated transcript peptide) or downregulated (including Npbwr1, encoding the receptor for neuropeptides B/W) during postnatal development. Collectively, these results provide new insight into the potential molecular mechanisms underlying the known age-dependent changes in spinal nociceptive processing and pain sensitivity.


Assuntos
Dinorfinas/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Perfil Genético , Corno Dorsal da Medula Espinal/crescimento & desenvolvimento , Transcrição Gênica/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...